
DisProTrack: Distributed Provenance Tracking over
Serverless Applications

Utkalika Satapathy∗, Rishabh Thakur∗, Subhrendu Chattopadhyay†, Sandip Chakraborty∗
∗IIT Kharagpur, Kharagpur, India 721302 †IDRBT, Hyderabad, India 500057

Abstract—Provenance tracking has been widely used in the
recent literature to debug system vulnerabilities and find the
root causes behind faults, errors, or crashes over a running
system. However, the existing approaches primarily developed
graph-based models for provenance tracking over monolithic
applications running directly over the operating system kernel. In
contrast, the modern DevOps-based service-oriented architecture
relies on distributed platforms, like serverless computing that uses
container-based sandboxing over the kernel. Provenance tracking
over such a distributed micro-service architecture is challenging,
as the application and system logs are generated asynchronously
and follow heterogeneous nomenclature and logging formats. This
paper develops a novel approach to combining system and micro-
services logs together to generate a Universal Provenance Graph
(UPG) that can be used for provenance tracking over serverless
architecture. We develop a Loadable Kernel Module (LKM)
for runtime unit identification over the logs by intercepting
the system calls with the help from the control flow graphs
over the static application binaries. Finally, we design a regular
expression-based log optimization method for reverse query
parsing over the generated UPG. A thorough evaluation of the
proposed UPG model with different benchmarked serverless
applications shows the system’s effectiveness.

Index Terms—Distributed provenance tracking,

I. INTRODUCTION

Modern service-oriented architecture adopts DevOps [1], [2]
practices and technologies to provide Software as a service
(SaaS) [3] by leveraging distributed cloud infrastructure. Ser-
vice deployment on top of the cloud widely adopts serverless
computing (SLC) [4] to reduce operational expenditure when-
ever the service computations are stateless, elastic, and possi-
bly distributed. Micro-services deployed on top of SLC archi-
tecture provide an abstraction of the underlying infrastructure
where the developer can write, deploy and execute the code
without configuring and managing the shared environment [4]–
[7]. However, the available serverless-specific industry so-
lutions [8]–[10] provide limited support for error reporting,
execution tracing, and provenance tracking. Consequently,
developers can only provide little attention to log vital forensic
information. Some of the third-party observability tools [11]–
[14] support distributed tracing as well as cost analysis features
by instrumenting the source codes. However, these tools only
support applications developed using a particular programming
language. So, it is difficult to analyze the actual behavior of
these micro-services.

Provenance Graphs: The non-invasive 1 frameworks rely

1The non-invasive tools neither inject any piece of code inside the micro-
service/container instances nor injects any special services into the SLC
platform.

on the logs generated by applications to identify the ex-
ecution states. Since most of the production-grade micro-
services are chosen from an available stable release, the
executable files already contain meaningful log messages
that can be used to identify event handling loops. In the
domain of system security, provenance data is the metadata
of a process that records the details of the origin and the
history of modification or transformation that happened over
time throughout its lifecycle [15]–[20]. The graph generated
from this information is called the provenance graph of a
process which is a causal graph that stores the dependencies
between system subjects (e.g., processes) and system objects
(e.g., files, network sockets). For example, an application
event may generate a separate application log, error log, and
operating system calls specific log, etc. In this context, a
provenance graph is a directed acyclic graph (DAG) where
individual log entries are the nodes, and the edges represent the
causality relationship between the log entries. During attack
investigation, an administrator queries this graph to find out
the root cause and ramifications of an event. While a malicious
entity performs some illegal events, the corresponding system
logs are recorded as the provenance data. For example, when
a compromised process tries to open a sensitive file, the
OS level provenance can record the file-open activity, which
can be referred for vulnerability analysis whenever an attack
is detected in the system [21], [22]. Real-world enterprises
widely use kernel or OS level information (logs) to perform
provenance analysis to monitor their systems and identify the
malicious events performed back in time.

A. Limitations of Existing Works and the Research Challenges

There have been several works that attempted to generate
the provenance graphs by combining system and application
logs together [16]–[20], [23]. However, these works primarily
considered a monolithic application running directly over the
Kernel, and thus combining the system log with the application
log is not difficult. In contrast, the individual log files for
each micro-service over an SLC application are physically
distributed across the entire eco-system, which makes the
generation of the provenance graph non-trivial. In such a
scenario, a Universal Provenance Graph (UPG) that combines
the interactions among all the micro-services can provide a
meaningful platform for distributed provenance tracking. A
few existing works [20], [24] have tried to address the issue
of encoding all forensically-relevant causal dependencies re-
gardless of their origin. Nevertheless, we have some non-trivial

challenges in constructing a UPG for an SLC application.
• Challenge 1 – Combining application logs from different
micro-services: Different micro-services generate separate logs
that vary across the format for log messages, naming of
the events and process descriptors, timestamp formatting, etc.
Combining these logs towards generating the UPG is non-
trivial as they may result in confounding nodes and edges in
the graph.
• Challenge 2 – Combining the system log with the appli-
cation logs: The next challenge comes in terms of combining
the application logs with the system log (kernel audit log).
The first issue is that the container-based sandboxing uses a
common process identifier (pid) space; thus, mapping the
kernel process logs with the micro-services event logs is
not straight-forward, particularly when a micro-service run a
multi-threaded process.
• Challenge 3 – Identification of execution units: As different
micro-services may come from different production endpoints,
there exists heterogeneity in terms of their implementation
standards. Thus it is non-trivial to identify the functions or
execution units that generate a specific entry in the log. In the
same context, it is also difficult to identify the event handling
loops, as the loops might produce asynchronous log entries.
This problem magnifies in the case of SLC as the micro-
services are deployed in different sandboxed environments.
• Challenge 4 – Dependency explosion and handling con-
founding root causes: To find out the root cause behind an
event, the system administrator needs to execute a reverse
query on the UPG. The results obtained from the reverse query
can be multiple due to partial matching of the input query
string. This results in more than one root cause behind a query
event. Further, due to plausible circular dependencies among
the micro-services, the resultant UPG might not be a DAG.
Therefore, it is non-trivial to track all the causal paths behind
an event.

Owing to the above challenges, in this paper, we develop a
provenance tracing system, DisProTrack that generates a
UPG which helps in root cause analysis of an event running
on serverless by combining the system provenance with appli-
cation’s container logs. The core idea behind DisProTrack
is to judicially use the applications’ control flow graph (CFG)
to avoid the runtime log tracking complexities.

B. Our Contributions

In contrast to the existing works, our contributions in this
paper are as follows.

1. Design of the UPG from application and system logs:
We implement a static analyzer module that generates the
application-specific Log Message String - Control Flow Graph
(LMS-CFG) from the application binaries. The LMS-CFG
provides a profile of the application. We provide a novel
approach for constructing a UPG from application logs
and system logs using the LMS-CFG profiles for different
application micro-services.

2. Runtime execution unit identification: We develop a
Linux LKM (loadable kernel module) which can intercept
the system calls generated during execution time to identify
the semantic relationship between the system logs and
the application logs. Furthermore, we propose a heuristic
to segregate execution units which are challenging in a
distributed system. Our proposed heuristic identifies the
system calls (syscalls) to mark the application’s event
handling loops by tracing back the application binaries. These
event handling loops can be refereed during the runtime
partitioning of execution units across the micro-services.

3. Utilization of Regular Expression to improve search
efficacy: Instead of storing the raw log messages in the UPG,
we propose conversion and storage of an equivalent regular
expression. This method improves the matching accuracy of
log messages during the investigation phase and reduces the
runtime search complexity by providing a faster response
time. This method also reduces dependency explosion by
decreasing the number of nodes in the generated UPG.

4. Implementation and evaluation: We have implemented
the proposed framework, which can be deployed as a micro-
service on top of the SLC without instrumenting the source
code of the applications. We have made the implementa-
tion open-sourced2. Based on the experimental evaluation of
DisProTrack with several benchmarked SLC applications,
we found that the proposed method works well for identifying
adversary activities. The framework has a minimal memory
footprint (in the order of KB) and responds within 20s-30s.
The efficiency and efficacy of DisProTrack have also been
tested with a proof-of-concept SLC application scenario.

II. RELATED WORK

Existing third party log collection tools like, FUSE [25],
LSM [26], CamFlow [27], SPADE [28], etc., allow hooking the
kernel level objects and system calls; however, these methods
require instrumentation of the OS. Additionally, the collection
of system-level provenance in a containerized or serverless
environment is difficult due to the micro-services’ distributed
and minimalistic deployed nature. Therefore, the existing
threat detection and investigations with system-level prove-
nance graph using kernel audit-log data, such as, ETW [29],
SLEUTH [30], Pagoda [31], POIROT [32], HOLMES [33],
WATSON [34], etc., do not suit an SLC environment. One
common challenge for causality analysis with system prove-
nance graph is the “Dependency Explosion” problem [35],
[36] where too many “root causes” are behind one suspicious
event. This dependency explosion increases the probability of
“security alert fatigue” and “missing threats”.
BEEP [36] and OMEGALOG [16] have addressed dependency

explosion problem by increasing input and output edge iden-
tification accuracy in the provenance graph. Other methods

2https://anonymous.4open.science/r/Project_ALV_2022-CEFD/ (Accessed:
January 13, 2023)

Phy HW

Host OS

Universal
log

Phy HW

Host OS

Legends
 App
Logs

System
Logs

Micro
Service

Log Accumulator

Docker Logging
Daemons

(a) Environment Setup

LKMPHY HW

App Logs

Process
Auditd

Audit Logs
Static Analyzer

Angr
Framework

Log
Acc.

LCU

Universal Log

UPG Gen
UPG for

Regex

Exe Part
Identifier

PreProcessor

(PID,TIMESTAMP) || LOG

LMS-CFG

UPG for

UPG for

COMBINED
UPG

(b) DisProTrack Execution Flow

LMS-CFG

"LMS-
0"

CFG

Start

NY
If

print "LMS-
2"

print to log
file "LMS-1"

print
"LMS-0"

"LMS-
1"

"LMS-
2"

(c) Example of CFG and LMS-CFG

Fig. 1: DisProTrack Overview

read

firefox192.168.0.1

apache

/var/log/
apache/

write

/etc/
resolv.conf

php-
fpm

connect

/www/data/

read accept

/var/log/
fpm-

access.log

write

src/htdocs

read

/etc/
resolv.conf

read

db

/var/log/
query.log

write

/usr/local/db/
datafile.db

read/
write

accept

connect

localhost:3000
listen

bind

sendtorecvfrom

User/Client User/Client
sendto

recvfrom

sendto

recvfrom
172.0.0.1

Process Files Network Causal Event

Legends

Fig. 2: An Example of System Provenance

like ETW [29], LogGC [37], MPI [35], ProTracer [38],
etc., used execution partitioning to reduce the dependency
explosion. However, most of these works require some in-
strumentation over the application source code. On the other
hand, ALCHEMIST [20] and OMEGALOG used a combina-
tion of application-specific logs with system-level logs to
track the information flow more accurately. In the same line,
UIScope [39] proposed an instrumentation free, execution
partition-based causality analysis for attack investigation sys-
tem. However, the existing works are targeted toward mono-
lithic systems and can not be deployed to secure SLC appli-
cations. Although, a few existing tools like, X-trace [40]
and PivotTracing [41] are used to instrument SLC appli-
cations, they do not provide non-invasive property. Similarly,
[11]–[14] are reliant on the used programming languages
of the micro-service applications; thus lack flexibility [24].
The absence of language-independent, non-invasive causality
analysis frameworks for SLC has motivated us to design
DisProTrack.

III. DISPROTRACK OVERVIEW

The proposed DisProTrack is an open source provenance
tracking system for containerized SLC as shown in Fig. 1a.
DisProTrack accumulates the system and application logs
of all the micro-service containers (µS) to generate the un-
derlying directed edge-labeled provenance graph. The nodes

of the provenance graph represent the system artifacts, for
example, processes, socket connections, files, etc. The edges
represent the causal dependencies between the nodes. Each
edge is labeled with the generated system call (syscall) events
(e.g. read, write, connect, exec, etc.) as shown in Fig. 2. The
accumulated logs are merged together to create a “universal
log” which is further used to identify the nodes of the
provenance graph. Additionally, the framework also analyzes
the CFG of the individual applications to understand the event
handling loops before the deployment. So, the provenance
graph generation requires two phases and, depending on that,
DisProTrack is sub-divided into two major components; (a)
static analyzer and (b) runtime engine as shown in Fig. 1b.

A. DisProTrack Static Analyzer

The static analyzer module analyzes the application executa-
bles and generates a semantic relationship between multiple
Log Message String (LMS). Here, we define a LMS as a
string present in the executable responsible for printing some
log message. Typical LMSes contains format specifiers, error
codes, debug level identifiers, etc. Since we only require the
causal relationships between LMSes, the static analyzer iden-
tifies only the Log Message Generating Functions (LMGF).

Definition 1 (Log Message Generating Functions). We define
a LMGF as a library function that is directly used for printing
a LMSes in either terminals, specific log store files, or log
databases.

For example, consider the following C code snippet with a
popular logging library Log4C.
log4c_category_log(NULL,
LOG4C_PRIORITY_ERROR,"Hello World!");
Here the LMS is Hello World! and the LMGF is
log4c_category_log. More details about LMGF is
described in Section IV-A.

Definition 2 (Log Message String CFG). A LMS-CFG is
formally defined as a directed graph G′ = (V ′, E′) where

∀
e′i,j∈E′

e′i,j = (v′i, v
′
j) : v

′
i, v
′
j ∈ V ′ represents a directed edge

between v′i, v
′
j where each v′ ∈ V ′ represents an LMGF. G′

is constructed from CFG G = (V,E) such that, V ′ ⊆ V and,

∃
e′∈E′

e′ = (v′i, v
′
k) : v′i, v

′
j , v
′
k ∈ V ′, ∄

v′
j

v′j ∈ P(G, v′i, v
′
k). In

this case P(G, v′i, v
′
k) represents the directed path from v′i to

v′k in G.

An example of a CFG and the corresponding LMS-CFG is
provided in Fig. 1c where the constructed LMS-CFG contains
only the LMS nodes from the CFG.

1) Contextualization of application log and system log
(handling Challenges 1 & 2): The LMS-CFG is stored sepa-
rately and frequently consulted by the runtime engine. During
the execution, when the different levels of logs are generated,
the constructed LMS-CFG is used to understand the relation-
ship among those log messages. Based on the relationship,
the logs coming from different sources are combined together
(details in Section IV-B2).

B. DisProTrack Execution Path (Runtime Analyzer)
During the execution of the system, the applications gener-

ate multiple logs depending on the user’s activities. So the
task of the runtime engine is to collect and contextualize
the log messages generated at the systems and application
levels. We assume that the micro-services containers have
auditd [42] installed for monitoring system-level logs. This
assumption does not violate the “without instrumentation of
the application source code” constraint, as it is straightforward
to add an auditd layer to the existing containers without
knowing anything about the application source codes.

1) Tracing the execution units from processes belonging
to different micro-services (handling Challenge 3): To avoid
confusion during the contextualization process of the accumu-
lated logs, we append the Process ID (PID) of the process
responsible for generating the log and the timestamp to add the
semantic context to individual log entries. For this purpose, we
develop a Loadable Kernel Module (LKM) which intercepts
all the write syscalls caused by log printing functions to extract
the PID information and timestamp of the system and append it
to the log preamble. This LKM is deployed in the bare metal
infrastructure where the containers are executing (details in
Section IV-B2).

2) Dependency explosion and handling confounding root
causes (handling Challenge 4): During the execution of
the applications, the runtime engine periodically fetches the
marked log entries from the micro-services. It generates the
UPG after consulting the LMS-CFG. The LMS-CFG provides
a relationship between the applications and file, which is
exploited to construct UPG as depicted in Fig. 2. The details
of the UPG construction procedure are described in the next
section. The generated UPG is consulted by the system admin-
istrators for the system provenance tracking. The root cause
of any suspicious log entry can be identified by backtracing
the UPG (details in Section IV-C).

IV. COMPONENTS OF DISPROTRACK

In this section, we describe the design of individual
components of DisProTrack. As mentioned previously,
DisProTrack is subdivided into two parts; (a) Static An-
alyzer, and (b) Runtime Engine.

A. Static Analyzer

The static analyzer takes individual micro-service’s ap-
plication binaries as input and constructs the corresponding
LMS-CFG for that micro-service application. A typical ap-
plication will contain a set of statements to print the LMSes
with syscalls in between. In our proposed framework, we load
the executable application binary and use the python Angr
module [43], [44] to identify the CFG from it. The generated
CFG is a directed graph having the basic instruction blocks
(syscalls, printing of LMSes, etc.) as nodes, and the edges
of the graph represent jump/call/return statements from one
block to another. Let the CFG be represented as G = (V,E),
where V and E are the nodes and the edges of the CFG,
respectively. We then use the same Angr module to extract all
the nodes F from the CFG G(V,E) corresponding to various
function calls. One significant issue with the generated CFG
is that it does not always provide the complete graph due
to the missing hardware-dependent features and system call
information. Therefore, in this case, we only concentrate on
the LMGF. Typically the stable versions of the applications use
standard LMGF (e.g. printf, log4c, syslog, etc.). Let
L be a list of standard LMGF names. We find L ⊆ F where
L contains the LMGFs from L. We construct a LMS-CFG
G′(V ′, E′) from G(V,E) with the help of L.

We propose Algorithm 1 to convert G = (V,E) to
G′ = (V ′, E′) for a given L as the input. Each node in G
represents a sequence of instructions. If a node v contains
a LMGF name, then the algorithm extracts the arguments
of the LMGF, which has been defined as a LMS apriori.
For example, for a given LMGF fprintf, consider the
following log entry function.
“fprintf(stderr, "AH00526: Syntax error on
line %d of %s:");”
In this case, the algorithm extracts the LMS as "AH00526:
Syntax error on line %d of %s:", which is the
constant string reference passed as an argument to the LMGF.

During the construction of LMS-CFG, we need to iden-
tify the caller functions of the LMGF, which is a time-
consuming operation. Therefore, we limit the depth of back-
ward tracing up to a certain threshold (BT), as shown in
Algorithm 1:Line 13. The optimal value of BT depends
on the complexity of the generated CFG, which we shall
discuss during the experimental evaluation (Section V-B1). For
accurate identification of the LMSes, we need to avoid the
programming language-specific format specifiers. For that, we
replace the format specifier of LMS with equivalent regular
expressions (see Algorithm 1:Line 10). For example, consider
the LMS as shown earlier: “AH00526: Syntax error
on line %d of %s:”. The regular expression equivalent
to this LMS becomes “AH00526: Syntax error on
line -?[0-9]+ of .*:”, where %d and %s are replaced
with [0-9]+ and .*, respectively. Additionally, we mark the
starting and ending LMS positions of the event handling loops
with a flag. This generated and marked LMS-CFG is used by
Runtime Engine explained next.

Algorithm 1: CFG to LMS-CFG Generation
1 Procedure Main

Input: G(V,E): CFG, L: Set of LMGFs in G(V,E)
Output: LMS-CFG G′ = (V ′, E′)

2 Initialization:
3 V ′ ← ∅, E′ ← ∅

4 for v ∈ L do
/* The Angr tools return whether a node

is a loop */
5 if v has a loop then

/* For a loop, we need to find out
all the LMSes (A) that are printed
through the loop. */

6 A← BackTraceOptimization(BTth, G(V,E), v);
/* Construct the subgraph GA(VA, EA)

for A */
7 GA(VA, EA)← CreateSubGraph(Ai);
8 V ′ ← V ′ ∪ VA;
9 E′ ← E′ ∪ EA;

10 for v′ ∈ V ′ do
11 Identify format specifiers in v′ and replace them with suitable

Regular Expressions;

12 return G′(V ′, E′);

13 Function BackTraceOptimization
Input: BT : Backtrace Threshold, G(V,E): CFG, v: A node from L

having a loop
Output: A: A set of LMSes in the loop

14 Initialization:
15 A← ∅
16 if v has a set of LMSes {l0, · · · lk} printed through the loop with

syscalls in between the LMSes then
/* We consider the loops having a

syscall and associated LMSes */
17 A← A ∪ {l0, · · · , lk};
18 return A;
19 else

/* The loop within v does not print any
LMSes */

20 do
/* Backtrack to the LMGF that called

v, until the backtrack threshold
BT is reached. */

21 if ⟨v̄ → v⟩ is a directed edge in G(V,E) then
22 if v̄ has a loop with a syscall and a set of LMSes

{l0, · · · lk} then
23 A← A ∪ {l0, · · · , lk};
24 return A;

25 v ← v̄;
26 BT ← BT − 1;
27 while BT > 0;

28 return A;

29 Function CreateSubGraph
Input: A
Output: GA(VA, EA): A Subgraph generated from A

30 Initialization:
31 VA ← ∅, EA ← ∅

32 foreach {li, li+1} ∈ A do
33 VA ← VA ∪ {li, li+1};
34 EA ← EA ∪ {⟨li → li+1⟩};

35 return GA(VA, EA);

B. Runtime Engine

We design DisProTrack Runtime Engine as a micro-
service that can be deployed in the serverless platform. Since
most of the serverless functions are deployed using multi-
ple containers, log collection and analysis are challenging.
DisProTrack is concerned about two types of logs; (i)
Logs generated by the applications (i.e., inside the container)

and (ii) System and/or serverless daemon logs (i.e., logs from
the physical servers systems) – we call them Syslogs. The
major challenge of obtaining a container’s internal logs is that
as the process spaces of the containers and the host system
are isolated, identification of processes and syscalls become
difficult. To avoid such issues, we use an audit daemon in
each container by deploying a separate image layer3 over the
containers. The audit daemon is used to track the syscalls
generated by the applications inside the containers.

However, audit logs provide the container internal PID,
which might conflict with the audit logs obtained from dif-
ferent containers. The conflict must be resolved before the
aggregation of the system log and application log. Therefore,
we develop a LKM which intercepts LMS before it is printed
in the log file and appends a unique tag (which is a combina-
tion of container ID, PID, and timestamp) to each LMS entry.
This unique tag is used to establish a relationship by adding
semantic context among the LMS.

The scope of operation for the runtime engine starts when-
ever the applications start generating logs. We have segregated
Runtime Engine into three submodules; (a) Log accumulator,
(b) Log processor, and (c) Provenance builder, which are
described as follows.

1) Log Accumulator: Once the log files are generated, the
Log Accumulator module periodically pulls the log files from
all levels and performs operations on them to correlate them
with the events. The non-persistent and ephemeral nature of
micro-services implies the risk of data loss or the loss of logs
generated during the execution phase of the container lifecy-
cle when the container shuts down. Therefore, the proposed
module periodically pulls the logs. To prevent data loss due to
“SIGKILL", we deploy a signal handler inside the deployed
image layer to instruct the container to save the logs in a
persistent data volume.

2) Log Processor: Once the logs are accumulated, the Log
Processor module aggregates the logs collected from various
sources. However, simple concatenation of log files does not
preserve the semantics relationship. Therefore, we convert the
text-based log files into an equivalent JSON format. From
the formatted application log files, the PID of the application
is extracted from the tag generated by the LKM. Using the
PID, the syscalls are identified from the audit logs. Now the
LMS and the syscall-generated logs are merged to create an
Application-Specific Common Log (ASCL) file such that the
application logs appear just before the corresponding Syslogs.

C. Provenance Builder

At the runtime, the Provenance Builder takes the ASCL
file and LMS-CFG of a process as input and constructs the
corresponding UPG component for that process. The ASCL
file contains interleaved application-level logs (⟨pid, ts, lms⟩)
and Syslog (⟨pid, ts, syscall, path, exe⟩) entries. Using Algo-
rithm 2, we identify the execution units in the ASCL file with

3https://docs.docker.com/storage/storagedriver/ (Accessed: January 13,
2023)

Algorithm 2: UPG Construction
1 Procedure Main

Input: G′ = (V ′, E′): LMS-CFG, Fpid: ASCL file for process pid
Output: GU

pid = (V U
pid, E

U
pid): UPG component for process pid

2 Initialization:
3 V U

pid ← ∅, E
U
pid ← ∅, Upid ← ∅, Epid ← ∅, Gpid ← ∅;

/* Upid: An execution unit denoting the
set of LMSes matched with V ′

*/
/* Epid: Set of system logs corresponding

to an execution unit */
/* Gpid: Set of all Epid from Fpid */

4 end_unit← false /* tracks execution units */

5 foreach e in Fpid do
/* e can be an application-level entry

⟨pid, ts, lms⟩ or a syslog entry
⟨pid, ts, syscall, path, exe⟩ */

/* pid: Process ID, ts: Log timestamp */
/* lms: LMS, syscall: Syscall in log */
/* path: System object (dir, socket,

etc.) accessed by the executable */
/* exe: Name of the executable */

6 if e is an application-level entry then
7 if e is the first entry in F then

/* Perform a regex match to find a
node n from G′(V ′, E′) which
matches with e. n denotes the
current state of the search. */

8 n← FindLMSinGraph(G′, e);
9 Upid ← Upid ∪ {n}

10 else
/* Perform a regex match to find a

node in the neighbor of n over
the graph G′(V ′, E′); the new
node becomes the current state
of the search */

11 n← MatchNeighbourNodes(G′,n,e);
12 Upid ← Upid ∪ n ;

13 if n is a leaf node in G′(V ′, E′) then
14 end_unit← true /* Seen a block of

LMSes logged by the application
from a LMGF */

15 if end_unit is true then
16 Epid ← Epid ∪ e;
17 end_unit← false /* tracked syslogs for an

execution unit */
18 Gpid ← Gpid ∪ Epid;
19 Epid ← ∅
20 else

/* e is a syslog entry and end_unit is
false */

21 Epid ← Epid ∪ e;

/* Tracked all syslogs for individual
execution units, now construct the UPG */

22 partition← 0 /* keep tracks of individual
execution units */

23 foreach Epid ∈ Gpid do
24 partition← partition + 1 ;
25 foreach e ∈ Epid do
26 if e has a valid exe and syscall then
27 V U

pid ← V U
pid ∪ {e.exe} /* the name of

the executable application
binary becomes a node */

28 V U
pid ← V U

pid ∪ {partition||e.path} /* the
partition value appended with the
object path accessed in e
becomes the second node */

29 EU
pid ← EU

pid ∪ {⟨e.exe→
partition||e.path, e.syscall⟩} /* an
edge is added between the above
two nodes with e.syscall as the
edge label */

the help of LMS-CFG, where an execution unit represents a
sequence of LMSes execution of a process. In this heuristic,
we intelligently apply the LMS-CFG to mark the end of
an execution unit by using the leaf nodes of the graph. In
this heuristic, we assume that the micro-services are weakly
time-synchronized with a small time drift λ. The bound on
λ depends on how frequently the log messages from two
different execution units are getting printed. In reality, λ can
be in the order of a few hundred milliseconds as printing the
logs too frequently is also an overhead for an application.

Extract Execution Units with the help from LMS-CFGs
of application micro-services. Initially, the execution unit is
empty. When the algorithm encounters an application-level log
entry from the file, which also happens to be the first entry, it
performs a regular expression matching on the LMS-CFG to
find a node with a match of that entry. If a valid match, say, n,
is found, then n becomes the current state. For the rest of the
log entries, it performs the regular expression matching with
the neighbors of n from the LMS-CFG to find the next state.
This step is repeated for all the application-level entries till
we find n as a leaf node in the LMS-CFG, which denotes an
end unit of the execution unit. The intermediate Syslog entries
are added to their respective PID’s execution unit Epid. When
the end unit becomes true, it implies a block of LMSes has
been printed along with a syscall execution. Hence, we save
the state of this execution unit in a set Gpid and make the
execution unit Epid empty for the next set of LMSes to be
added. We also set the end unit flag to false.

Interconnect execution units. Once all the syslogs for
an execution unit is extracted, Algorithm 2 (Line: 23-29)
constructs the UPG for that execution unit Gpid. We keep
track of individual execution units in Gpid using a variable
called partition. For every execution partition in Gpid, if
an entry e contains exe and syscall, then the nodes of the
UPG are – (i) the name of the executable application binary
(e.exe), and (ii) the system objects such as files, socket,
directory, etc. (e.path) appended with the partition value.
The edges are added between the above two nodes, where the
corresponding Syscall denotes the edge labels from the Syslog
entry (e.syscall). The resulting UPG is the union of all the
UPG components constructed for each PID.

V. PERFORMANCE EVALUATION

The objective of our experimentation is two-fold as follows.

1) Since DisProTrack is targeted for serverless applica-
tions; resource overhead is a major concern. Therefore,
experimentally we want to understand the resource over-
head of the framework.

2) We also want to understand how effective
DisProTrack is for identifying malicious activities.

For experimental analysis, we have implemented
DisProTrack4 and executed it in a testbed deployed
in our lab. The implementation details are as follows.

4https://anonymous.4open.science/r/Project_ALV_2022-CEFD/

BT=2 BT=3 BT=4 BT=5

 0.1

 1

 10

 100

 1000

M
a

g
ic

k

M
y

S
q

l

P
H

P
-F

P
M

A
p

a
c

h
e

2

O
p

e
n

V
P

N

W
g

e
t

D
y

n
a

m
o

D
B

T
im

e
(s

)

(a) Required Time

 0.1

 1

 10

 100

 1000

M
a

g
ic

k

M
y

S
q

l

P
H

P
-F

P
M

A
p

a
c

h
e

2

O
p

e
n

V
P

N

W
g

e
t

D
y

n
a

m
o

D
B

M
e

m
(M

B
)

(b) Memory Consumption

 0.1

 1

 10

 100

 1000

M
a

g
ic

k

M
y

S
q

l

P
H

P
F

P
M

A
p

a
c

h
e

2

O
p

e
n

V
P

N

W
g

e
t

D
y

n
a

m
o

D
B

L
M

S
(#

)

(c) LMS Found

 0.03125

 0.15625

 0.78125

 3.90625

 19.5312

M
a
g

ic
k

M
y
S

q
l

P
H

P
-F

P
M

A
p

a
c
h

e
2

O
p

e
n

V
P

N

W
g

e
t

D
y
n

a
m

o
D

B

S
iz

e
(M

B
)

(d) Application Size

Fig. 3: Static Analysis – The Y-axes are in logarithmic scale

A. Experimental Setup

The experiments are executed on a workstation having
Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz dual-core
processor and 32 GB of memory. To ensure bare metal
infrastructural abstraction, we use multiple Virtual Machine
(VM) instances running with Ubuntu 22.04 LTS with Kernel
version 5.15.0 − 39-generic. The compute functions are de-
ployed using Docker5 across the VMs. We use docker-swarm6

for container management where one container instance is
deployed as the manager. For communication, we use an
overlay network driver to ensure direct connectivity among
the containers. During our experimentation, we have used the
standard docker images of the applications collected from
Dockerhub7 with an added image layer of auditd as
described in Section IV-B1. On the other hand, the proposed
static analyzer and runtime engine are deployed as a container-
ized micro-service.

B. Resource Utilization

We conducted experiments to analyze the resource utiliza-
tion and overhead imposed by DisProTrack, which has
a two-fold view – (i) the overhead of the static analyzer,
which is a one-time event for every deployment scenario, and
(ii) the overhead of the runtime engine, which is a periodic
event. Therefore, we present different sets of experiments to
understand these overheads as follows. Each experiment is
repeated 10 times, and the mean is shown in the plots.

1) Overhead of Static analyzer: To understand the resource
utilization overhead during static analysis, we have considered
7 different applications as given in Table I.

TABLE I: List of Benchmarked Applications

Name Type of Application
Apache Webserver Together popular as LAMP-Stack

and widely used for web service
deployment

PHP-FPM
MySql
DynamoDB A noSQL based database used in Amazon Lambda

stream processing usecase
ImageMagick An image processing framework can be used for

various Amazon Lambda file processing usecases
OpenVPN A popular Secure IP tunnel daemon
Wget Linux network downloader

Based on the obtained results (Figs. 3a and 3b), we observe
that the static analysis for MySql takes the longest time to
complete and needs a greater amount of memory. The time

5https://www.docker.com/ (Accessed: January 13, 2023)
6https://docs.docker.com/engine/swarm/ (Accessed: January 13, 2023)
7https://hub.docker.com/ (Accessed: January 13, 2023)

and memory requirements increase when the BT increases.
This is justified as the value of BT increases, the number
of backtraces also increases (as mentioned in Section IV-A).
However, an increase in the number of backtraces can identify
more number of LMSes as shown in Fig. 3c. We also observe
that even though the size of Magick is greater than the size of
MySql (Fig. 3d), it takes more time and memory for MySql
to trace the LMSes. This is due to the nature of the pro-
gram control instructions used by developers while developing
the application. Hence, it takes more time and memory to
complete the backtrace in the presence of higher number of
indirect branch instructions. For the same reason, PHP-FPM
takes less amount of time and memory than MySql; however,
it identifies more number of LMSes.

2) Overhead of Runtime Engine: Since the runtime engine
works for a pipeline of micro-services, we execute multiple
experiments on a web service application. Our deployed
LAMP stack web service is composed of 3 micro-services
(similar to Fig. 2); (a) [µ1]:Apache based web server, (b)
[µ2]: PHP-FHM for server-side request handling, and (c) [µ3]:
MySQL for handling queries generated by the PHP-FHM.
Each HTTP request incident on µ1 forwards a FastCGI
requests to µ2. µ2 executes the handler functions and accesses
the database deployed in µ3 for dynamic content. Once the
page is constructed, µ1 returns it as a response to the client.
Specifically, we have hosted an application authorization portal
where µ1 interacts with the µ2 via µ3 to validate the user
credentials. Upon receiving the valid credentials, µ1 redirects
from the login page to a user-specific home page. Otherwise,
it remains on the same page with an error message pop-
up. On top of the authorization service, we consider three
experimental login scenarios as follows.
E1 New users register themselves, and the details are updated

in the database. Once registration is successful, the user
tries to log in and then log out of the application with
valid credentials.

E2 A user logs in with a valid credential and goes to the
home page. Once logged in, they try to reset the password
and re-login with a new password.

E3 A user tries to log in to the deployed web service. On the
homepage, they click on a link that triggers a background
script and redirects the user to a different IP.

The size and types of log files generated during these
experiments are presented in Fig. 4a. The results show that the
error logs generated during E2 are more significant than E3. In
contrary, the access log generated by E3 is much greater than

 0.1

 1

 10

Access Error Audit TotalL
o

g
 S

iz
e

 (
K

B
)

Log Types

E1 E2 E3

(a) Log File Size

 0

 0.3

 0.6

 0.9

E1 E2 E3

T
im

e
(s

)

Experiments

ASCL Gen Parsing

(b) Phase wise execution time

 200
 205
 210
 215
 220
 225
 230
 235

E1 E2 E3

M
e
m

(B
y
te

s
)

Experiments

ASCL Gen UPG Gen

(c) Phase wise Memory utilization

Fig. 4: Runtime Analysis – The Y-axis in (a) is in logarithmic scale

 0.1
 1

 10
 100

Nodes Edges CCC
a
rd

in
a
li
ty

(#
)

UPG Properties

E1 E2 E3

(a) UPG Parameters

 55

 56

 57

 58

E1 E2 E3

M
a
tc

h
(m

s
)

Experiments

(b) RegEx Identification Time

 15

 20

 25

 30

E1 E2 E3

T
o

ta
l(

s
)

Experiments

(c) UPG Construction time

Fig. 5: Runtime Analysis – The Y-axis in (a) is in logarithmic scale

the rest of the two scenarios. However, the audit log generated
by E3 is greater than the other two. The log file size depends
on a user’s actions while browsing the web service.

Next, we present the phase-wise time consumption analysis
in Fig. 4b. Here we observe that the time required to parse
the log files, merging them to create an ASCL and generation
of UPG during provenance builder (shown in Fig. 5c) is
directly related to the total amount of logs generated during
the experiments which take approximately 600ms-900ms to
complete the runtime processing. After contextualizing the
log files, the system administrator provided suspicious log
messages converted into an equivalent regular expression
(RegEx) to avoid the values of the variables. This generated
RegEx string is searched across the LMS-CFG which takes
only a few milliseconds (as shown in Fig. 5b). We also provide
the memory consumption during the individual phases as
presented in Fig. 4c which suggests that the memory footprint
is significantly lower for the modules of the runtime engine
(in between 200B to 250B).

We observe that depending on the scenarios, the nature
of the UPG is different, as shown in Fig. 5a. We find that
E3 has a significantly higher amount of nodes and edges
than the rest of the two cases. The number of connected
components in the UPG is considerably higher for E3. Each
connected component in the graph represents an execution unit
of a process, which helps resolve the dependency explosion
problem. Only the related events of a process form a connected
component. More number of connected components implies
that the graph is more densely partitioned.

VI. ANALYSIS

This section discusses the effectiveness analysis of
DisProTrack. In this context, we consider an adversarial
scenario. The static analyzer can easily detect an adversary
who can modify the application’s source code. However, an
adversary accessing the runtime platform can evade the static
analysis and may issue malicious operations during code

execution. Therefore, in this section, we primarily focus on
detecting runtime adversaries. We have simulated multiple
attack scenarios by considering different adversary models.
We next discuss one of them.

A. Adversarial model & Attack Scenario

We assume that an adversary can somehow bypass the
authorization mechanisms and gain access to one/more ap-
plication container(s) except the runtime engine container
without being detected. In the compromised container(s), the
adversary can add, modify, and/or execute scripts and deploy
webpages. However, We assume that the logs and audit rules
are part of the trusted computing base (TCB). Moreover, the
communication between the compromised container and the
runtime engine can not be adulterated.

Using this adversarial model, the attacker may perform
different types of malicious activities. However, here we
present the case study in light of “confidential data theft”
attack8 where the attacker attempts to insert a malicious script
to steal the confidential information from the compromised
system. This script can be triggered during execution time.
We simulated the attack on top of our web service application
described in Section V-B2 by placing a malicious script named
“mal.sh” in PHP-FPM container. This script is executed when
an authorized entity login to the website after successful
authentication and clicks on a masked link on the welcome
webpage. Once the script gets triggered in the background,
alongside normal execution, it tries to access and read a
sensitive file on the server and forward them to an attacker’s
server IP address.

B. Provenance Builder for Attack Detection

Let us understand how this attack can be detected using
DisProTrack. The UPG constructed by DisProTrack
for above attack scenario is presented in Fig. 6a. To ensure

8https://bit.ly/trendmicro_shading_light (Accessed: January 13, 2023)

Utkalika Satapathy

http://y.y.y.y:80http://x.x.x.x:88

http://localhost:3000/login.php

PHP-FPM

MYSQL ht
tp
://
lo
ca
lh
os
t:3
00
0/
lw
el
co
m
e.
ph
p

mal.sh /etc/*release

http://u.u.u.u:80/

Client Gateway

Attacker

(a) UPG for Confidential Data Theft

Foo1(j)Foo2(j)

int k;
if(j%==2)

printf("") printf("")

printf("")
FILE *fd

if(f==NULL)

printf("")

Entry

printf("")

fprintf(STDERR,"")

return
-1

return 0

fprintf(f,"")
if(ret <23)

return
-1

return 0

printf("")

(b) CFG for Test Program

"Empty function\n"

"Start\n"

`testfile\.txt`

"Call Foo2, j=[0-9]*\n"

"End\n"

"Call Foo1, j=[0-9]*\n"

"Error: File open \n"

"Write to testfile.txt\n" `STDERR`

"Error writing to file\n"

(c) LMS-CFG for Test Program

Fig. 6: A PoC Case Study to Analyze the Accuracy of DisProTrack

readability, we have omitted a few UPG metadata and masked
IP addresses. Using the relative event sequence numbers/edge
identifier, the sequence of events can be traced in order. From
the particular UPG instance, we can find that a client with IP
address x.x.x.x is connected to the service via port 88. The
client takes the normal authentication route (from e1 to e7)
to reach the welcome.php page. After that, the mal.sh
script is triggered which results in collection of data from
/etc/*release directory and forward it to u.u.u.u (from
e8 to e10). This step is a deviation from the standard behavior;
therefore, the system administrator must intervene in this case
and take some preventive action (e.g., suspend user access,
block IP, etc.).

1 # i n c l u d e < u n i s t d . h>
2 # i n c l u d e < s t r i n g . h>
3 # i n c l u d e < s t d i o . h>
4 # i n c l u d e < s t d l i b . h>
5 # d e f i n e Foo2 (i n t j) ({ p r i n t f (" Empty f u n c t i o n \ n ") ; })
6

7 i n t Foo1 (i n t j) {
8 FILE * f = fopen (" t e s t f i l e . t x t " , " a ") ;
9 i f (f == NULL) {

10 p r i n t f (" E r r o r : F i l e open \ n ") ; r e t u r n −1;
11 }
12 i f (f p r i n t f (f , " Wr i t e t o t e s t f i l e . t x t \ n ") < 23) {
13 f p r i n t f (s t d e r r , " E r r o r w r i t i n g t o f i l e \ n ") ;
14 r e t u r n −1;
15 }
16 r e t u r n (0) ;
17 }
18 / * ********************** * /
19 i n t main (vo id) {
20 p r i n t f (" S t a r t \ n ") ; i n t j = r and () ;
21 i f (j %2==0){
22 p r i n t f (" C a l l Foo1 () , j = %d \ n " , j) ; Foo1 (j) ;
23 } e l s e {
24 p r i n t f (" C a l l Foo2 () , j = %d \ n " , j) ; Foo2 (j) ;
25 }
26 p r i n t f (" End \ n ") ;
27 r e t u r n 0 ;
28 }

Listing 1: PoC Program for Accuracy Analysis

C. Accuracy analysis of DisProTrack
During our development of DisProTrack and experimen-

tation with several other attack scenarios, we observed that the
detection of attack depends on the accuracy of LMS-CFG con-
struction from CFG in the static analyzer. Although we have
presented the LMS identification results in Fig. 3c for different

applications, the lack of gold standard values restricts us from
claiming the accuracy of the proposed Algorithm 1. Therefore,
to justify the accuracy of the static analyzer, we present a small
sample proof-of-concept (PoC) program (Listing 1) here. The
sample program presents two function calls depending on a
random number generated. The functions can either generate
a log message in the STDERR console or in a log file. As
the program is simplistic in nature, it is easy to ascertain
the accuracy of the generated LMS-CFG from the framework
presented in Fig. 6c. For comparison purposes, we present the
corresponding CFG in Fig. 6b, which is also obtained from
the static analyzer module. From these two figures, we observe
that both the figures have 8 listed LMSes and two file handles.
The causal paths among the nodes are also verified to ensure
that all the paths are covered in the corresponding LMS-CFG.

VII. CONCLUSION

This paper developed a non-invasive causality analysis
framework, called DisProTrack, for provenance tracking
over distributed serverless applications. The proposed frame-
work is capable of adversarial attack analysis by identifying
the root causes effectively. DisProTrack can be deployed
on top of the SLC as a micro-service and has the virtue of
being lightweight and provides results within 0.5 minutes. A
PoC analysis of DisProTrack also shows its efficiency and
efficacy in detecting attack instances for an SLC application.

A critical aspect of DisProTrack is that it uses a heuristic
to identify the execution units by matching the CFGs generated
from the micro-service binaries with the runtime application
and system logs based on their temporal execution patterns.
Thus, the framework might wrongly identify the execution
units if the underlying servers running the micro-services
are not weakly time synchronized (time drift within a small
threshold). Nevertheless, this condition rarely occurs in a
typical distributed SLC platform with multiple micro-services
interacting with each other. Further, DisProTrack can be
deployed as an additional micro-service along with the other
application micro-services running over the servers, making
it robust to be applied for a wide range of production-grade
serverless application scenarios.

The authors have provided public access to their code and/or
data at https://github.com/usatpath01/DisProTrack.

REFERENCES

[1] K. Kuusinen, V. Balakumar, S. C. Jepsen, S. H. Larsen, T. A. Lemqvist,
A. Muric, A. Nielsen, and O. Vestergaard, “A large agile organization
on its journey towards devops,” in Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2018), 2018, pp. 60–63.

[2] K. Ojo-Gonzalez, R. Prosper-Heredia, L. Dominguez-Quintero, and
M. Vargas-Lombardo, “A model devops framework for saas in the
cloud,” in Advances and Applications in Computer Science, Electronics
and Industrial Engineering, 2021, pp. 37–51.

[3] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-
faas: Trustworthy and accountable function-as-a-service using intel sgx,”
in ACM SIGSAC Conference on Cloud Computing Security Workshop,
2019, pp. 185–199.

[4] K. S.-P. Chang and S. J. Fink, “Visualizing serverless cloud applica-
tion logs for program understanding,” in IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2017), 2017, pp.
261–265.

[5] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J.
Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson,
“What serverless computing is and should become: The next phase of
cloud computing,” Communications of the ACM, pp. 76–84, 2021.

[6] D. Taibi, J. Spillner, and K. Wawruch, “Serverless computing-where are
we now, and where are we heading?” IEEE Software, pp. 25–31, 2020.

[7] L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring
layered container structure for cost efficient microservice deployment,”
in IEEE Conference on Computer Communications (IEEE INFOCOM
2021), 2021, pp. 1–9.

[8] “Aws x-ray,” https://aws.amazon.com/xray/.
[9] “Google cloud - viewing monitored metrics,” https://cloud.google.com/

functions/docs/monitoring/metrics/.
[10] “Microsoft azure monitor,” https://cloud.google.com/functions/docs/

monitoring/metrics/.
[11] “Iopipe - monitor serverless applications,” https://www.iopipe.com/.
[12] “Dashbird - monitor serverless applications,” https://dashbird.io/.
[13] “Thundra - monitor serverless applications,” https://www.thundra.io/.
[14] “Epsagon - monitor serverless applications,” https://epsagon.com/.
[15] S. Zawoad, R. Hasan, and K. Islam, “Secprov: Trustworthy and efficient

provenance management in the cloud,” in IEEE Conference on Computer
Communications (IEEE INFOCOM 2018), 2018, pp. 1241–1249.

[16] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “OmegaLog:
High-fidelity attack investigation via transparent multi-layer log analy-
sis,” in The Network and Distributed System Security Symposium (NDSS
2020), 2020.

[17] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in IEEE Symposium on
Security and Privacy (SP 2020). IEEE, 2020, pp. 1172–1189.

[18] M. M. Anjum, S. Iqbal, and B. Hamelin, “ANUBIS: a provenance
graph-based framework for advanced persistent threat detection,” in
ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 1684–1693.

[19] H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. H. Lee, J. Patel,
S. Jha, Y. Kwon, D. Xu, and X. Zhang, “Trace: Enterprise-wide
provenance tracking for real-time apt detection,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 4363–4376, 2021.

[20] L. Yu, S. Ma, Z. Zhang, G. Tao, X. Zhang, D. Xu, V. E. Urias, H. W. Lin,
G. F. Ciocarlie, V. Yegneswaran et al., “ALchemist: Fusing application
and audit logs for precise attack provenance without instrumentation.” in
The Network and Distributed System Security Symposium (NDSS 2021),
2021.

[21] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy {Whole-
System} provenance for the linux kernel,” in USENIX Security Sympo-
sium (USENIX Security 2015), 2015, pp. 319–334.

[22] J. Tavori and H. Levy, “Tornadoes in the cloud: Worst-case attacks
on distributed resources systems,” in IEEE Conference on Computer
Communications (IEEE INFOCOM 2021), 2021, pp. 1–10.

[23] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter et al., “You are what you do: Hunting stealthy
malware via data provenance analysis.” in The Network and Distributed
System Security Symposium (NDSS 2020), 2020.

[24] P. Datta, I. Polinsky, M. A. Inam, A. Bates, and W. Enck, “ALASTOR:
Reconstructing the provenance of serverless intrusions,” in USENIX
Security Symposium (USENIX Security 2022), 2022.

[25] “Linux fuse,” https://man7.org/linux/man-pages/man4/fuse.4.html.
[26] C. Schaufler, “Lsm: Stacking for major security modules,” https://

lwn.net/Articles/697259, 2016.
[27] T. F. J.-M. Pasquier, J. Singh, D. Eyers, and J. Bacon, “Camflow:

Managed data-sharing for cloud services,” IEEE Transactions on Cloud
Computing, vol. 5, no. 3, pp. 472–484, 2017.

[28] A. Gehani and D. Tariq, “Spade: Support for prmiscovenance auditing in
distributed environments,” in ACM/IFIP/USENIX International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing.
Springer, 2012, pp. 101–120.

[29] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,”
in Annual Computer Security Applications Conference (ACSAC 2015),
2015, pp. 401–410.

[30] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. Venkatakrishnan, “SLEUTH: Real-time
attack scenario reconstruction from COTS audit data,” in USENIX
Security Symposium (USENIX Security 2017), 2017, pp. 487–504.

[31] Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda: A
hybrid approach to enable efficient real-time provenance based intrusion
detection in big data environments,” IEEE Transactions on Dependable
and Secure Computing, vol. 17, no. 6, pp. 1283–1296, 2018.

[32] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in ACM SIGSAC Conference on Computer and Com-
munications Security, 2019, p. 1795–1812.

[33] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in IEEE Symposium on Security and Privacy (SP
2019). IEEE, 2019, pp. 1137–1152.

[34] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics,” in The Network and Distributed System Security Symposium
(NDSS 2021), 2021.

[35] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple perspective attack investigation with semantic aware execution
partitioning,” in USENIX Security Symposium (USENIX Security 2017),
2017, pp. 1111–1128.

[36] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance
via binary-based execution partition.” in The Network and Distributed
System Security Symposium (NDSS 2013), vol. 2, 2013, p. 4.

[37] ——, “Loggc: Garbage collecting audit log,” in ACM conference on
Computer & communications security (SIGSAC 2013), 2013, pp. 1005–
1016.

[38] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in The Network
and Distributed System Security Symposium (NDSS 2016), vol. 2, 2016,
p. 4.

[39] R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “UIScope: Accurate,
instrumentation-free, and visible attack investigation for gui applica-
tions.” in The Network and Distributed System Security Symposium
(NDSS 2020), 2020.

[40] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker, “X-Trace: A pervasive
network tracing framework,” in USENIX Symposium on Networked
Systems Design & Implementation (NSDI 2007), 2007.

[41] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Symposium on Operating Systems
Principles (SOSP 2015), 2015, pp. 378–393.

[42] (2007, Mar) auditd(8) - linux manual page. [Online]. Available:
https://man7.org/linux/man-pages/man8/auditd.8.html

[43] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (state of) the art of war: Offensive techniques in binary analysis,”
IEEE Symposium on Security and Privacy (SP 2016), 2016.

[44] “Angr,” https://angr.io/.

